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1. HISTORICAL INTRODUCTION

The theory of saturation of nontrigonometric operators originated with
the results about Bernstein polynomials B,(f, x) by DeLeeuw [6], by one of
the present authors [13], and by Bajanski and Bojani¢ [2]. In particular,
Lorentz [13] proved that | B,(f, x) — f(x)| < [x(1 — x)2n] M, 0 < x < I,
if and only if the function fhas a derivative that belongs to the class Lip,, 1.
Bajanski and Bojanié proved that if B,(f, xj — f{x} = o(n~1) at each point
0 < x << 1, then fis linear.

The method of the paper [13] has been further developed by Deluca
[7]1 on one hand, and by Ikeno, Suzuki and Watanabe [8, 21-23] on the other.
They showed that the proof of [13] can be formulated in a more general form,
which allows one to apply it with success to many concrete problems.

The method of Bajanski and Bojani¢ found further development in the
papers of Amel’kovic [1} and Miihlbach [15]. They have noticed that asymp-
totic relations (of the type appearing in the theorem of Voronovskaja, ses
{12, p. 22]) are of great help in this problem.

Recently, the method of semigroups of operators and of infinitesimal
generators has been applied to the saturation problems by Schnabl [18],
Micchelli [14] and Karlin and Ziegler [11]. (Butzer was the first to discover
the usefulness of this method in trigonometric saturation problems; see for
example, Butzer and Berens [3]).

In the present paper we shall further develop the second method. Since
there does not exist a comparative study of the merits of the three methods
described above, let us stress its advantages: it leads to simple proofs
(Section 4), allows local assumptions to be treated (compare o1} in
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Theorem 4.3, which is not uniform), and it can be applied to a wide variety
of known special approximation operators (sections 5, 6).

Basic for us will be the existence of an appropriate asymptotic formula and
the positivity of the approximating operator. An important tool will be the
theory of CebySev systems, developed by Karlin and Studden [10]. As a
byproduct of our results, we shall see that a sequence of positive linear
operators cannot satisfy an asymptotic relation of the form (4.1) with & > 2.

2. DIFFERENTIAL OPERATORS, CEBYSEV SYSTEMS AND CONVEXITY

Let wy ,..., w;, be continuous, strictly positive functions on (a, b), such that
w; € C*, j = 0,..., k. We define the operators

Dif(x) = [({wDN S, j=0,..k—1, 2.1)
Df (x) = [1/wi(x)] Dip—y "+ Do f (), 2.2)

and
Af (x) = [1/wp_1()] Dy s =** Dy f (x). (2.3)

With the operator D we associate the functions (where ¢ is a fixed point,
a<<c<b

“o(x) = w()(x)a

(@) = wo(x) [ wit) diy,
) (2.4)

t tr

£ 1 1

u(x) = wo(x) fc wy(ty) dty J.c waty) dty - J.c wi(ty) diy; -

The functions u,,..., 4, ; form a fundamental set of solutions of
the differential equation Du = 0; the function u, satisfies Du,, = 1.

According to Karlin and Studden [10, Chap. 11] the functions (2.4) form
an extended complete CebySev system. This means that they belong to
C¥(a, b) and that each set uy,...,u;, 0 <j <k, is a Cebyfev system on
each closed subinterval of (a, ). In particular, the determinants

uy(xo) up(xy) v up(xy)
e B ] BN
u(xg) wx) o us(xy)

whenevera < x, < »+ < x; <b,0 <j <k
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With the system (2.4) we sometimes associate the reduced system vy ..., Vps ,
defined by

vi(x) = [ () ue(x))s  j=0..,k—1L (2.6}
The functions v; belong to C*, and are given by formulas similar to (2.4},

involving the functions w, ,..., w, ; they too form an extended complete
Cebysev system. Moreover [10, p. 383],

U (llg . uk) — Jlﬁ% uo(x;) f: J‘j Jﬂ

X 5eres Xi

T

U (”0 ”’H) iy dty - dty 5 .

Tp_g By seces tk—l

2.7
A function ¢ of the form ¢ = Z'fj a;u; will be called linear. A function f
on (g, b) is convex with respect to uy ,..., u_y if £ = 2, and if

i ;’ijj;) >0, a<x < <x<b. (2.8)
For i = 2, 3,..., k, the function u, is convex with respect to i ,..., 4;_; . A
important theorem of Karlin and Studden [10] characterizes convex
functions f. (A simple proof of this theorem, due to Miihlbach [17], will
appear in this Journal.) The relevant properties are: fe C*%{q, b) and f has
right and left derivatives f&(x), f¥V(x) for a < x < b, which are,
respectively, right and left continuous. Moreover,

Apf(x) = [/wya(x)] Dzlca—2 Dy - Dof (X) 2.9

is right continuous and increasing on (g, b).
For any function f(x) on (a, b) and any set of points

a < x < <Xy Kb,

there exists a unique interpolating function ¢ = Z';H a;it; , which coincides
with ffor x = x;, j = 0,..., k — 1. The following two lemmas will be used
in Section 4.

LEMMA 2.1. A continuous funcrion f is convex on (a, b) with respect to
Uy, ¥, if and only if for every a << x; < x, <<b the linear function
¢ = aguy + ayu, interpolating f at xy,x, satisfies $x) < f(xy for all
X <X K Xy

Lemma 2.2. Let f be convex with respect fo uy , u, and let ¢ be the linear
function such that $(xo) = f(xo) and ¢'(x0) = fx(x). Then $(x) <f(x)
Joralla < x < b.



416 LORENTZ AND SCHUMAKER

The simple proofs are left to the reader. Compare also [9, Theorem 2.2,
p.- 282].

3. LipscHirz CONDITIONS

We shall say that a function 4, continuous on (g, b), satisfies the Lipschitz
condition or belongs to the class Lip,,*1 with respect to u,..., u; , With
M >0, if h has a right continuous derivative A% and a left continuous
AED and if

Ahx) — Ah(x) = —M [ wDyde, a<xe<xm<b ()

where for each of the values of 4% one can substitute 4 #and 4; k. Similarly,
A belongs to the class Lip,, 1, if

Ah(xy) — Ah(x) < M f " (t) dt. (3.2)

Finally, A belbngs to the class Lip,,1 with respect to the-system u, ,..., uy, if
A*-1 is absolutely continuous, and if almost everywhere

| Dh(x)| < M. (3.3)

LeMMA 3.1. A continuous function f on (a, b) belongs to the class Lipy*+1
with respect (0 Uy ,..., Uy, if and only if Mu, + f is convex with respect 1o
Uy geery Up—

Proof. If Mu, -+ f is convex, the required smoothness of f follows from
the theorem of Karlin and Studden mentioned in Section 2.

The condition that Mu, -~ fis convex is equivalent to the validity of the
inequality

. Uy gueey Up_ Hg geeey Up_ U;.
U(l): B Ll’f)Z'—MU(O’ s “k-1 > Iu), (34)
Xp 5ees Xp—1 5 X1/ X0 svees Xy 5 Xp

for all possible points a << x, < - << x; < b. To each of the two deter-
minants U in this inequality, we apply the formula (2.7); for the first of them
we replace u;, by f and v;_, by D, f. Then, using the positivity of w, and the
fact that the intervals (xg, xy),..., (x;_1 , X;) are disjoint, we see that (3.4)
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holds for all selections of the points a << x, < - < x; < &, if and only if

U (uo ) Dof) > MU (LQ yoees vkﬂ)

tc. seeny t]c,_z s tk-—l L JEREN Ik-—ll

(o
LA
g

holds for all selections of @ < 1, << -+ <ty < b.
‘We can repeat this process, obtaining reduced systems [see (2.6)] of higher
order. After k — 1 steps we reduce (3.4) to

U (Wk—1 > Wy Af ) > _MU (wk——l Wi | W.fc‘)
P .
Xg» X1 Xg Xy

(We use here the fact that a continuous function is the integral of its right
derivative if the latter exists everywhere and is integrable). But this is
equivalent to

1

A ) — Af ) > —M | wil) b

et

THEOREM 3.2. The following are equivalent for f< C(a, b):

feLipy™1 N Lipy~1  with respect to uy ..., 4y . {3.6)

Af is absolutely continuous on {a, b} and (3.7
|47 — A7) < M [t .

felipy 1 with respect to ug ..., uy, . {3.8)

Proof. The inequality (3.7) is equivalent to (3.6) by definition. If in this
inequality we make x, and x, approach, from left and right, some point x
of (a, b), we see that 4, f(x) = Axf(x) at this point. Thus (3.7) is equivalent
to the absolute continuity of f%1 and to | Df(x)| < M a..

4. THE SATURATION CLASSES
We assume that L,, n = 1, 2,.., are linear positive operators that map

Cla, b] into itself. In addition, we assume that L, satisfy the following
asymptotic fomula:

lim A [L,f(x) —f(X)] = p(x) Df(x), a<x<b, 4.

where A, > 0 converges to -+ co with 7, p(x) > 0 on [a, 8], and p(x) > O on
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(a, b), and D is a differential operator of type (2.2). We assume that (4.1)
holds whenever f belongs to the class C* (where k is the degree of D) in a
neighborhood of the point x.

In the following lemma we write r,(f) = L,(f) — f.

Lemma 4.1.  If
Aaro(fs X) 2 —Mp(x) +0(1), a<x<b, 4.2)
then the function Mu;,, + f is convex with respect to u, , u .

Proof. Assume that Mu, -+ f is not convex. Then, since the set of all
convex functions is closed in the space of continuous functions, the function
g =f+ (M + €) u;, is not convex for some € > 0.

According to Lemma 2.1, this implies the following. There exist points
a<x <y <xy,<b such that for the function ¢ interpolating g at
Xy, Xs , #(») < g(»). We consider the function

[g(x) — ¢/ wo(). (4.3)

It is continuous on I = [x,, x,], vanishes at the endpoints x, , x, , and has
value >0 at y. Let m be its maximum on [; suppose it is achieved at z with
X, < z < Xp. The linear function ¢,(x) = ¢(x) + mw,(x) coincides with
g at z and satisfies g(x) << ¢y(x) for xe I,

We can extend g from I to a continuous function G on [a, b], for which

G(Z) = ¢1(Z),
G(x) < ¢1(x)9 a < X < b, (4'4)
G(x) = g(x), xel
Then, applying (4.1) to the function g — G and to u;, (for which Du;, = 1), we
obtain
Anr'rz(f; z) = Anrn(f"*‘ (M + €) U, Z) — M + E) /\nrn(uk s Z)
= A 7u(G, 2) — (M + €) p(z) + o(1).
Since L,, is positive, it follows by (4.4) and (4.1) that
< MalLa(1 5 2) — 4(2)] — (M + €) p(z) + o(1)
< —(M + €) p(2) + o(D).

But this contradicts (4.2). This completes the proof of Lemma 4.1.
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Similarly, if
Anrn(f; x) < MP(X) + 0(1)5

then the function Mu, — f is convex.
As a corollary we have

TueoreM 4.2. A sequence of positive linear operators L, cannot satisfy
an asumptotic formula of the form (4.1) with k > 2.

Proof. Assume the contrary. Then (4.1) implies that (4.2} is satisfied for
M =0 and f = —u,. But then —u, is convex with respect to 1;, . 2
contradiction.

From now on we shall assume k = 2 in (4.1). The following theorem
identifies the saturation class of the operators L, .

THEOREM 4.3. A function f < Cla, b] satisfies
An [ Lnf(x) '—f(x)l < MP(x) + 0(1)9 n— 00, a<<x< b: {45)

(where o(1) converges to zero for n— oo, but not necessarily uniformly), if’
and only if f € Lipy, 1 with respect to uy , u; , Uy .

The theorem follows from the results of Section 3, Lemma 4.1 and the
following lemma.

LemMA 4.4. If Mu, + f is convex with respect to g, 4, , then (4.2} is
satisfied.

Proof. Let a < x5 << b be fixed. By Lemma 2.2, there exists a linear
function ¢ with the properties

xg) = B(xy),
gg((ag = iix;) a<x<h, {4.6)
where g = Muj, -+ f. Then
Aarnl 85 X0) = MalLa 8, Xo) — (xe)] = ALn(h, x0) — P(xp)] = o(1),
by (4.1). Hence
Xt n(fo %) = —MMro(uy 5 x5) - 0o(1) = —Mp(xg) + 0(1),

as required.
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Remark 1. From the case M =0 of Theorem 4.3 we obtain: If
Ato(fy X) = o(1) for a < x << b, then fis linear. This is a result of Bajanski—
Bojanié type.

Remark 2. Sometimes it is possible to prove a slightly more satisfying
statement, namely, that for f e C [a, b] one has

Al Lo(f, x) — f(x)] < Mp(x), a<x<b, n=12..., (@7

if and only if '€ Lip,s 1. This is true if L, reproduces the functions u, , 4 ,
and (4.7) holds for f = u, .

Only the sufficiency of the condition is to be shown; the proof is the same
as that of Lemma 4.4.

5. APPROXIMATION OF FUNCTIONS OF TWO VARIABLES

Let Gy C R? be an open domain with compact closure G. We consider a
sequence of positive linear operators L, that map C(G) into itself and satisfy
an asymptotic formula

Wm A, [La(f; %, ) — F 06 V)] = p(x, ) D (%, ), (%, ) € G, G.D

where A, — o0, p(x, ¥) > 0, and D is an elliptic operator

Df = a(x, yN&F]0x?) + 2b(x, y)(&%f]ox 9y) + c(x, )(@f]y*)  (5.2)

with continuously differentiable functions a, b, ¢ in G that satisfy > — ac < 0
in Gy .

We shall need the following definitions and facts about operators (5.2)
(see, for example, [5]). There exists a solution U e C¥G,) of the equation
DU = 1. A solution ¢ of D¢ = 0 will be called harmonic. For each
disc y C G, , and for arbitrary continuous boundary values on the boundary
of v, the Dirichlet problem for v is solvable with a harmonic ¢ (since the
assumptions on D assure it is uniformly elliptic on the disc ). A function
v e C¥Gy) N C(G) will be called subharmonice, if for each y C G, one has
v < ¢ on the disc bounded by y, where ¢ is the solution of the Dirichlet
problem with boundary values v on y. The subharmonic functions are
characterized by the inequality Dov(x, y) = Oon G, .

After these preparations, we can solve the saturation problem, at least
for smooth functions f:

THEOREM 5.1. The class of all functions fe C¥G,) N C(G) that satisfy
N Lo(fi %, ) —f, )] < Mp(x, p) +0(1),  (x,»)eGy (5.3)
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prent

is identical with the class of all functions for which both MU + fand MU — f
are subharmonic.

The proof of the necessity of the conditions is the same as that of
Lemma 4.1. If they are satisfied, then D(MU 4- f) = 0. This implies that
i Df| << MD(U) = M. Then (5.3) follows from (5.1).

6. APPLICATION AND EXAMPLES

For sequences of positive linear operators operating on functions of one
variable, the saturation theorem of Section 4 permits the derivation of many
known results as well as a wide variety of new ones. Many positive linear
operators satisfy an asymptotic relation of the form

lim AL (f, X) — f(O] = o) f'(x) + B}/ "(x),a <x <b, (6.1
where o(x) > 0, B(x) > 0 in (g, ). Then i p(x) is any function, positive
on (a, b), the right hand side of (6.1) can be written as p{x) Df (x) with

Ll oy 1 1B
=\ ! _— = —_— = A . "
br W (wlf ) ’ Wy €Xp ¢, Wa o exp{—q),

= J

where ¢ is some fixed point in (a, b).
As a first example, we consider the operators of Cheney and Sharma [4],

Pof;0) = (1 — xy* exp (=) Zf( +1})L‘">(t)x” 0<x<

where ¢ < 0 is a parameter, and L, is the Laguerre polynomial of degree ».
For t = 0, P, reduce to the operators of Meyer—K&nig and Zeller. For the
operators (6.3), Watanabe and Suzuki [23] established relation (6.1) with
=2n + 1), ax) = —2fx, and B(x) = x(1 — x)%. To illusirate the
technique we shall give two different saturation results for P,
Choosing p(x) = 1, the saturation class of the Chenev~Sharma operators
P, with respect to the relation

2(n + DI Pu(f, %) — f) < M+ o(1)
consists precisely of all f with absolutely continuous f’, for which

| —2txf'(x) + x(1 —x2f"(x); < M, a.e. (6.4)
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On the other hand, if we choose p(x) = x(1 — x)? e~4®), where

e —2t
7(x) = J1/2 (1 —s) s,

then w, = 1 and 1/w, = e*®. We conclude that the saturation class of P,
relative to the relation

2n + D] Pp(fs x) —f)] < x(1 — x)* e "M + o(1) (6.5)

consists of all functions f such that f’e? is absolutely continuous and belongs
to the classical Lipschitz class Lip,, 1.

In the special case ¢ = 0, the second result above yields a theorem of
Watanabe and Suzuki [22] for the Meyer—Ko6nig and Zeller operators. The
saturation results for the operators of Szdsz, and of Baskakov, proved in [8]
and [21] by other methods, also follow from Theorem 4.2.

The Bernstein polynomials B,(f, x) satisfy relation (6.1) with A, = n,
a = 0 and B(x) = x(I — x)/2. The choice p(x) = $x(1 — x) leads to the
theorem of Lorentz [13] mentioned in the introduction. Other choices of p
lead to new saturation theorems. For example, taking p(x) =1 and
Df (x) = ix(1 — x) f"(x), we obtain

nB(f;x) —fl <M, 0<x<I, (6.6)
if and only if /* is absolutely continuous and
[F7O) <2M[[x(1 —x)]  ae.

Still another example of a sequence of positive linear operators satisfying
an asymptotic relation of the form (6.1) with « 5= 0 can be found in
Miihlbach [16].

For functions f(x, y) of two variables, there exist natural definitions of
their Bernstein polynomials B,(f; x, y) for the case of the square, 0 < x,
. ¥ < 1, and of the triangle; x > 0, y > 0, x + y << 1. Compare [12, p. 51,
formulas (12) and (13), respectively]. Stancu [20, 19] has obtained for the
two cases the relation

lim n[B,(f; x, y) — f(x, )] = Df (%, y), Y
where

- 1 — o2 — o2
Dfoy = XD KN 69)
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for the square and

x(1 —x) & 9>
Dfx,y) = D oy

1—y) &
Pt ; b, @in (6.9)

for the triangle. The differential operators (6.8) and (6.9) are elliptic, and
results of our Section 5 apply. (We note that in [19] Stancu assumes only
the existence and continuity of the derivatives appearing in (6.9), which is
not enough, instead of fe C?).
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