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1. HISTORICAL INTRODUCTION

The theory of saturation of nontrigonometric operators originated with
the results about Bernstein polynomials Bn(f, x) by DeLeeuw [6], by one of
the present authors [13], and by Bajanski and Bojanic [2]. In particular,
Lorentz [13) proved that I Bn(f, x) - j(x)i ~ [xCI - x)j2n) !vI, 0 ~ x ~ 1,
if and only if the function/has a derivative that belongs to the class LipM 1.
Bajanski and Bojanic proved that if Bn(J, x) - f(x) = o(n-I) at each point
o ~ x ~ 1, then/is linear.

The method of the paper [13] has been further developed by DeLuca
(7) on one hand, and by Ikeno, Suzuki and Watanabe [8, 21-23] on the other.
They showed that the proof of [13) can be formulated in a more general form,
which allows one to apply it with success to many concrete problems.

The method of Bajanski and Bojanic found further development in the
papers of Amel'kovic (1) and Miihlbach (15). They have noticed that asymp
totic relations (of the type appearing in the theorem of Voronovskaja, see
[12, p. 22)) are of great help in this problem.

Recently, the method of semigroups of operators and of infinitesimal
generators has been applied to the saturation problems by Schnabl [18],
Micchelli [14) and Karlin and Ziegler [11). (Butzer was the first to discover
the usefulness of this method in trigonometric saturation problems; see for
example, Butzer and Berens [3]).

In the present paper we shall further develop the second method. Since
there does not exist a comparative study of the merits of the three methods
described above, let us stress its advantages: it leads to simple proofs
(Section 4), allows local assumptions to be treated (compare 0(1) in
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Theorem 4.3, which is not uniform), and it can be applied to a wide variety
of known special approximation operators (sections 5, 6).

Basic for us will be the existence of an appropriate asymptotic formula and
the positivity of the approximating operator. An important tool will be the
theory of Cebysev systems, developed by Karlin and Studden [10]. As a
byproduct of our results, we shall see that a sequence of positive linear
operators cannot satisfy an asymptotic relation of the form (4.1) with k > 2.

2. DIFFERENTIAL OPERATORS, CEBYSEV SYSTEMS AND CONVEXITY

Let Wo , ... , Wk be continuous, strictly positive functions on (a, b), such that
Wj E Ck-j, j = 0,..., k. We define the operators

D;/(x) = [(1/wj(x))f(x)]', j = 0,... , k - 1, (2.1)

Df(x) = [l/wk(x)] Dk- 1 ... Dof(x), (2.2)

and

Jf(x) = [l/Wk_l(X)] Dk- 2 ••• Dof(x). (2.3)

With the operator D we associate the functions (where c is a fixed point,
a < c < b)

uo(x) = wo(x),

u1(x) = wo(x) rW1(t1) dt1 ,
c

(2.4)

'" t1 f k - 1

Uk(X) = wo(x) f W1(t1) dt1 f W2(t2) dt2 ••• f Wk(tk) dtk .
c .. (; C

The functions Uo ,..., Uk-l form a fundamental set of solutions of
the differential equation Du = 0; the function Uk satisfies DUk = 1.

According to Karlin and Studden [10, Chap. 11] the functions (2.4) form
an extended complete Cebysev system. This means that they belong to
Ck(a, b) and that each set Uo ,... , Uj, 0 ~ j ~ k, is a Cebysev system on
each closed subinterval of (a, b). In particular, the determinants

Uo(xo) UO(Xl)
u (Uo , , Ui) = u1(XO) U1(Xl)

Xo , , Xi
(2.5)

whenever a < Xo < ... < Xi < b, 0 ~ j ~ k.
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With the system (2.4) we sometimes associate the reducedsystem Vo " .. , VI<:-1,

defined by

vlx) = [um(x)fuo(x)]', j = 0, ... , k - 1. (2.6)

The functions Vi belong to Ck-l, and are given by formulas similar to (2.4),
involving the functions WI"'" Wk; they too form an extended complete
Cebysev system. Moreover [10, p. 383],

( )
k I"'1 I"" ."'k ( V)U Uo , .•. , Uk - n () ... J TT Vo ,... , Ie-I d d ... d

- Uo Xi lJ to t1 tk- 1 .
Xo ,..., Xk i~O "'0 Xl "'l'-1 to ,... , tle- 1

(2.7)

A function ep of the form ep = L::~ aiUj will be called linear. A function!
on (a, b) is convex with respect to Uo ,... , UIe-l if k ;;:: 2, and if

u ('UO, , UIe-1 , f)· ;;:: 0,
Xo , , Xk-l , Xle

(2.8)

For i = 2, 3,... , k, the function U i is convex with respect to Uo ,..., Ui-l . An
important theorem of Karlin and Studden [10] characterizes convex
functions f (A simple proof of this theorem, due to Miihlbach [17], will
appear in this Journal.) The relevant properties are: f E Ck-2(a, b) and f has
right and left derivatives Jl:-1

)(x), Jlj;-I)(X) for a < x < b, which are,
respectively, right and left continuous. Moreover,

(2.9)

is right continuous and increasing on (a, b).
For any functionf(x) on (a, b) and any set of points

a :'( X o < ... < Xk-I :'( b,

there exists a unique interpolating function ep = L~-I aiUj , which coincides
with f for x = Xi ,j = 0,..., k - 1. The following two lemmas will be used
in Section 4.

LEMMA 2.1. A continuous funcTion f is convex on (a, b) with respect to
Uo 'UI if and only if for every a < Xl < X 2 < b the linear function
ep = aouo + aIuI interpolating f at Xl' X 2 satisfies ep(x):'( f(x) for all
Xl :'( X :(; x 2 •

LEMMA 2.2. Let f be convex with respect to Uo , UI and let ep be the linear
function such that ep(xo) = f(xo) and ep'(xo) = fR'(XO)' Then ep(x):(; fex)
for all a :'( X :'( b.
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The simple proofs are left to the reader. Compare also [9, Theorem 2.2,
p.282].

3. L!PSCffiTz CONDITIONS

We shall say that a function h, continuous on (a, b), satisfies the Lipschitz
condition or belongs to the class LiPM+1 with respect to Uo , ... , Uk' with
M ;:?:o 0, if h has a right continuous derivative hC:-l ) and a left continuous
hlf-l ) and if

L1h(xl ) - L1h(xo) ;:?:o -M (' Wk(t) dt, a < X o < Xl < b, (3.1)
"'0

where for each of the values of L1h one can substitute LI R hand LI L h. Similarly,
h belongs to the class LiPM-1, if

"'I
L1h(xl) - L1h(xo) ~ M f"'0 Wk(t) dt. (3.2)

Finally, h belongs to the class LipMl with respect to the-system Uo ,... , Uk if
h(k-l) is absolutely continuous, and if almost everywhere

IDh(x) [ ~ M. (3.3)

LEMMA 3.1. A continuous function f on (a, b) belongs to the class LiPM+1
with respect to Uo ,... , Uk if and only if MUk + f is convex with respect EO

Uo , ... , Uk-I'

Proof If .Muk + fis convex, the required smoothness of/follows from
the theorem of Karlin and Studden mentioned in Section 2.

The condition that MUk + f is convex is equivalent to the validity of the
inequality

U (Uo , , Uk-I, f) ;:?:o -MU (Uo , , Uk-I, Uk), (3.4)
Xo , , Xk-l , Xk' Xo , , Xk-l , Xk

for all possible points a < xo < ... < Xk < b. To each of the two deter
minants Uin this inequality, we apply the formula (2.7); for the first of them
we replace Uk by f and l'k-l by Dof Then, using the positivity of Wo and the
fact that the intervals (xo , Xl), ... , (Xk- l , Xk) are disjoint, we see that (3.4)
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holds for all selections of the points a < XQ < '" < XI' < D, if and only if

(3.5)

holds for all selections of a < to < ... < tk- 1 < b,
We can repeat this process, obtaining reduced systems [see (2.6)] of higher

order. Mter k - 1 steps we reduce (3.4) to

(We use here the fact that a continuous function is the integral of its right
derivative if the latter exists everywhere and is integrable). But this is
equivalent to

,... Xl

Llf(x1) - Llf(xo) ~ -M I w,,(t) dt.
oJ Xo

THEOREM 3.2. The following are equivalent for fE C(a, b):

f E LipM+1 n LipM-1 with respect to Uo '00" Uk • (3.6)

Llf is absolutely continuous on Ca, b) and (3.7)

.'"1
I Llf(x1) - Llf(xo)I ~ M j "'0 wit) dt.

f E LipM 1 with respect to Uo '00" Uk • (3.8)

Proof The inequality (3.7) is equivalent to (3.6) by definition. If in this
inequality we make Xo and Xl approach, from left and right, some point x
of (a, b), we see that Ll d(x) = LlRf(x) at tbis point. Thus (3.7) is equivalent
to the absolute continuity OfP"-ll and to i Df(x) I ~ M a.e.

4. THE SATURATION CLASSES

We assume that L" , n = 1,2'00" are linear positive operators that map
qa, b] into itself. In addition, we assume that L" satisfy the following
asymptotic fomula:

lim An[LJ(x) - f(x)] = p(x) Df(x),
n.....:HX) .

a <x < b, (4.1)

where An > 0 converges to +00 with n, p(x) ~ 0 on [a, b], and p(x) > 0 on
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(a, b), and D is a differential operator of type (2.2). We assume that (4.1)
holds whenever f belongs to the class Ck (where k is the degree of D) in a
neighborhood of the point x.

In the following lemma we write Tn(f) = Ln(f) - f

LEMMA 4.1. If

AnTn(f, x) ?' -Mp(x) + 0(1), a < x < b, (4.2)

then the function MUle + f is convex with Tespect to Uo , UI .

Proof Assume that MUk + f is not convex. Then, since the set of all
convex functions is closed in the space of continuous functions, the function
g = f + (M + €) Uk is not convex for some € > O.

According to Lemma 2.1, this implies the following. There exist points
a < Xl < Y < X2 < b such that for the function rP interpolating g at
Xl' X2' rP(y) < g(y). We consider the function

[g(X) - rP(x)]/wo(X)' (4.3)

It is continuous on I = [Xl' x2], vanishes at the endpoints Xl , X2 , and has
value >0 at y. Let m be its maximum on I; suppose it is achieved at z with
Xl < z < X2 . The linear function rPI(X) = rP(x) + mwo(x) coincides with
g at z and satisfies g(x) ~ rPI(X) for X E I.

We can extend g from I to a continuous function G on [a, b], for which

G(z) = rPI(Z),

G(x) ~ rPI(X),

G(x) = g(x),

a ~ X ~ b,

xEI
(4.4)

Then, applying (4.1) to the function g - G and to Uk (for which DUk = 1), we
obtain

AnTn(f, z) = AnTnCf + (M + €) Uk' Z) - (M + €) AnTn(Uk , Z)

= AnTn(G, Z) - (M + €) p(Z) + 0(1).

Since L n is positive, it follows by (4.4) and (4.1) that

AnTn(f, z) = An[Ln(G, z) - G(z)] - (M + €) p(z) + 0(1)

~ An[Ln(rPI ' z) - rPI(Z)] - (M + €) p(z) + 0(1)

~ -(M + €) p(z) + 0(1).

But this contradicts (4.2). This completes the proof of Lemma 4.1.
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Similarly, if

Anrn(J, x) ~ Mp(x) + 0(1),

then the function MUk - f is convex.
As a corollary we have

419

THEOREM 4.2. A sequence of positive linear operators L n cannot satisfy
an asumptoticformula of the form (4.1) with k > 2.

Proof Assume the contrary. Then (4.1) implies that (4.2) is satisfied for
M = 0 and f = -u2 • But then -U2 is convex with respect to UO, Ul , a
contradiction.

From now on we shall assume k = 2 in (4.1). The following theorem
identifies the saturation class of the operators L n •

THEOREM 4.3. AfunctionfE C[a, b] satisfies

'\n I Lnf(x) - I (x) I ~ Mp(x) + 0(1), n --'>- 00, a < x < b, (4.5)

(where 0(1) converges to zero for n --'>- 00, but not necessarily uniformly), if
and only iffE LipM 1 with respect to ul , ut , u2 •

The theorem follows from the results of Section 3, Lemma 4.1 and the
following lemma.

LEMMA 4.4. If MU2 + f is convex with respect to uo , Ul , then (4.2) is
satisfied.

Proof Let a < Xo < b be fixed. By Lemma 2.2, there exists a linear
function c/J with the properties

g(xo) = c/J(xo),

g(x) ?: c/J(x), a ~ x ~ b,

where g = MU2 +f Then

{4.6)

Anrn(g, xo) = An[Ln(g, xo) - c/J(xo)] ?: An[LnCc/J, xo) - c/J(xo)] = 0(1),

by (4.1). Hence

as required.
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Remark 1. From the case M = 0 of Theorem 4.3 we obtain: If
Anrn(f, x) = 0(1) for a < x < b, thenfis linear. This is a result of Bajanski
Bojanic type.

Remark 2. Sometimes it is possible to prove a slightly more satisfying
statement, namely, that forf E C [a, b] one has

An ILn(f, x) - I (x) I ~ Mp(x), a < x < b, n = 1,2,... , (4.7)

if and only iffE LipM 1. This is true if L n reproduces the functions Uo , UI ,

and (4.7) holds for f = U2 •

Only the sufficiency of the condition is to be shown; the proof is the same
as that of Lemma 4.4.

5. ApPROXIMATION OF FUNCTIONS OF Two VARIABLES

Let Go C R2 be an open domain with compact closure G. We consider a
sequence of positive linear operators L n that map C(G) into itself and satisfy
an asymptotic formula

lim An[LnCf; x, y) - I(x, y)] = p(x, y) Df(x, y),
n..,a;>

(5.1)

where An -+ +00, p(x, y) > 0, and D is an elliptic operator

Df = a(x, y)(o2jlox2) + 2b(x, y)(o2Jjox oy) + c(x, y)(o2jjoy2) (5.2)

with continuously differentiable functions a, b, c in G that satisfy b2 - ac < 0
in Go.

We shall need the following definitions and facts about operators (5.2)
(see, for example, [5]). There exists a solution U E C2(Go) of the equation
DU - 1. A solution f/J of Df/J = 0 will be called harmonic. For each
disc y C Go , and for arbitrary continuous boundary values on the boundary
of y, the Dirichlet problem for y is solvable with a harmonic f/J (since the
assumptions on D assure it is uniformly elliptic on the disc y). A function
v E C2(GO) n C(G) will be called subharmonic, if for each y C Go one has
v ~ f/J on the disc bounded by y, where f/J is the solution of the Dirichlet
problem with boundary values v on y. The subharmonic functions are
characterized by the inequality Dv(x, y) ~ 0 on Go .

Mter these preparations, we can solve the saturation problem, at least
for smooth functions f:

THEOREM 5.1. The class of all functions fE C2(GO) n C(G) that satisfy

An I Ln(f; x, y) - I (x, y)1 ~ Mp(x, y) + 0(1), (x, y) E Go (5.3)
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is identical with the class ofall functions for which both MU + f and ]v!U - f
are subharmonic.

The proof of the necessity of the conditions is the same as that of
Lemma 4.1. If they are satisfied, then D(MU ±f) ~ O. This implies that
! Dfl ::::;; MD(U) = M. Then (5.3) follows from (5.1).

6. ApPLICATION AND EXAMPLES

For sequences of positive linear operators operating on functions of one
variable, the saturation theorem of Section 4 permits the derivation of many
known results as well as a wide variety of new ones. Many positive linear
operators satisfy an asymptotic relation of the form

~~ An[L.(j; x) - f(x)] = a(x)f'(x) + [3(x)f"(x), a < x < b, (6.1)

where a(x) ~ 0, f3(x) > 0 in (a, b). Then if p(x) is any function, positive
on (a, b), the right hand side of (6.1) can be written as p(x) Df(x) with

1(1 ,"
Df= lI'2 W/)'

1- = expq,
1'1'1

.X u{t) "
q(x) = j c [3(t) dt,

1 B--: = -'- exp(-q),
11 2 P

(6.2)

where c is some fixed point in (a, b).
As a first example, we consider the operators of Cheney and Sharma [4},

Pn(f, x) = (1 - x)1I+1 exp ( 1 ~ x ) ~/C~ 1)) L~n)(t) xv, 0::::;; x::::;; 1,
(6.3)

where t ::::;; 0 is a parameter, and Lv is the Laguerre polynomial of degree v.

For t = 0, Pn reduce to the operators of Meyer-Konig and Zeller. For the
operators (6.3), Watanabe and Suzuki [23] established relation (6.1) with
An = 2(n + 1), a(x) = -2tx, and [3(x) = x(1 - X)2. To illustrate the
technique we shall give two different saturation results for Pn •

Choosing p(x) = 1, the saturation class of the Cheney-Sharma operators
P" with respect to the relation

2(n + 1)1 Pn(f, x) - f(x)! ~ }v[ + 0(1)

consists precisely of all f with absolutely continuous f', for which

I -2txf'(x) + x(1 - x)2f"(x)i ::::;; M, a.e. (6.4)
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On the other hand, if we choose p(x) = x(1 - X)2 e-q(:l:>, where

.:l: -2t
q(x) = J (1 ) ds,

1/2 - S

then W 2 = 1 and l/w1 = eq(:l:>. We conclude that the saturation class of P n

relative to the relation

2(n + 1)/ Pif, x) - I (x) [ ~ x(1 - X)2 e-q(:l:>M + 0(1) (6.5)

consists of all functions f such that/,eq is absolutely continuous and belongs
to the classical Lipschitz class LipM 1.

In the special case t = 0, the second result above yields a theorem of
Watanabe and Suzuki [22] for the Meyer-Konig and Zeller operators. The
saturation results for the operators of Szasz, and of Baskakov, proved in [8]
and [21] by other methods, also follow from Theorem 4.2.

The Bernstein polynomials Bn(f, x) satisfy relation (6.1) with '\' = n,
IX = 0 and f3(x) = x(1 - x)/2. The choice p(x) = ix(1 - x) leads to the
theorem of Lorentz [13] mentioned in the introduction. Other choices of p
lead to new saturation theorems. For example, taking p(x) = 1 and
DI(x) = ix(1 - x)f"(x), we obtain

n IB.,(f, x) - I (x) I ~ M,

if and only if/' is absolutely continuous and

0< x < I, (6.6)

If"(x) I ~ 2M/[x(1 - x)] a.e.

Still another example of a sequence of positive linear operators satisfying
an asymptotic relation of the form (6.1) with IX =1= 0 can be found in
Miihlbach [16].

For functions I(x, y) of two variables, there exist natural definitions of
their Bernstein polynomials Bn(f; x, y) for the case of the square, 0 ~ x,
y ~ 1, and of the triangle; x ~ 0, y ~ 0, x + y ~ 1. Compare [12, p. 51,
formulas (12) and (13), respectively]. Stancu [20, 19] has obtained for the
two cases the relation

where

lim n[Bn(f; x, y) - I(x, y)] = DI(x, y),
ll--')oCIJ

D'f"( ) = xCI - x) 0":[ + y(1 - y) 0":[
~y 2 ~ 2 ~

(6.7)

(6.8)
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for the square and

D+(x ,) = x(l - x) o2j + X 82
/ + yO - y) o2j

'j , )- 2 8x2 y ox oy 2 8y 2

423

(6.9)

for the triangle. The differential operators (6.8) and (6.9) are elliptic, and
results of our Section 5 apply. rwe note that in [19] Stancu assumes only
the existence and continuity of the derivatives appearing in (6.9), which is
not enough, instead of / E C2).
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